Recursive Calculation of Dominant Singular Subspaces
نویسندگان
چکیده
In this paper we show how to compute recursively an approximation of the left and right dominant singular subspaces of a given matrix. In order to perform as few as possible operations on each column of the matrix, we use a variant of the classical Gram–Schmidt algorithm to estimate this subspace. The method is shown to be particularly suited for matrices with many more rows than columns. Bounds for the accuracy of the computed subspace are provided. Moreover, the analysis of error propagation in this algorithm provides new insights in the loss of orthogonality typically observed in the classical Gram–Schmidt method.
منابع مشابه
A Novel Reference Current Calculation Method for Shunt Active Power Filters using a Recursive Algebraic Approach
This paper presents a novel method to calculate the reference source current and the referencecompensating current for shunt active power filters (SAPFs). This method first calculates theamplitude and phase of the fundamental load current from a recursive algebraic approach blockbefore calculating the displacement power factor. Next, the amplitude of the reference mains currentis computed with ...
متن کاملOn the Temporal Evolution of Signal Subspaces in Vehicular MIMO Channels in the 5 GHz Band
We study the temporal evolution of the singular value decomposition of vehicular 4 X 4 MIMO channel measurements H(t)in the 5.2 GHz band for a selected single OFDM sub-carrier. First, we estimate the number of relevant singular values p(t), 0 less-than p(t) less-than 4 for each sampling time t by applying the minimum descriptive length (MDL) criterion. The MDL criterion is used here as an estim...
متن کاملThe Generalized Wave Model Representation of Singular 2-D Systems
M. and M. Abstract: Existence and uniqueness of solution for singular 2-D systems depends on regularity condition. Simple regularity implies regularity and under this assumption, the generalized wave model (GWM) is introduced to cast singular 2-D system of equations as a family of non-singular 1-D models with variable structure.These index dependent models, along with a set of boundary co...
متن کاملA fast recursive orthogonalization scheme for the Macaulay matrix
In this article we present a fast recursive orthogonalization scheme for two important subspaces of the Macaulay matrix: its row space and null space. It requires a graded monomial ordering and exploits the resulting structure of the Macaulay matrix induced by this graded ordering. The resulting orthogonal basis for the row space will retain a similar structure as the Macaulay matrix and is as ...
متن کاملLow-Rank Incremental Methods for Computing Dominant Singular Subspaces
Computing the singular values and vectors of a matrix is a crucial kernel in numerous scientific and industrial applications. As such, numerous methods have been proposed to handle this problem in a computationally efficient way. This paper considers a family of methods for incrementally computing the dominant SVD of a large matrix A. Specifically, we describe a unification of a number of previ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- SIAM J. Matrix Analysis Applications
دوره 25 شماره
صفحات -
تاریخ انتشار 2003